REFERENCES

References

1. Kata A. Anti-vaccine activists, Web 2.0, and the postmodern paradigm—an overview of tactics and tropes used online by the anti-vaccination movement. Vaccine. 2012;30(25):37783789. Crossref, MedlineGoogle Scholar
2. Breland JY, Quintiliani LM, Schneider KL, May CN, Pagoto S. Social media as a tool to increase the impact of public health research. Am J Public Health. 2017;107(12):18901891. LinkGoogle Scholar
3. Luxton DD, June JD, Fairall JM. Social media and suicide: a public health perspective. Am J Public Health. 2012;102(suppl 2):S195S200. LinkGoogle Scholar
4. Witteman HO, Zikmund-Fisher BJ. The defining characteristics of Web 2.0 and their potential influence in the online vaccination debate. Vaccine. 2012;30(25):37343740. Crossref, MedlineGoogle Scholar
5. Quinn SC. Probing beyond individual factors to understand influenza and pneumococcal vaccine uptake. Am J Public Health. 2018;108(4):427429. LinkGoogle Scholar
6. Betsch C, Brewer NT, Brocard P, et al. Opportunities and challenges of Web 2.0 for vaccination decisions. Vaccine. 2012;30(25):37273733. Crossref, MedlineGoogle Scholar
7. Tomeny TS, Vargo CJ, El-Toukhy S. Geographic and demographic correlates of autism-related anti-vaccine beliefs on Twitter, 2009–15. Soc Sci Med. 2017;191:168175. Crossref, MedlineGoogle Scholar
8. Smith MJ, Marshall GS. Navigating parental vaccine hesitancy. Pediatr Ann. 2010;39(8):476482. Crossref, MedlineGoogle Scholar
9. Dubé E, Vivion M, MacDonald NE. Vaccine hesitancy, vaccine refusal and the anti-vaccine movement: influence, impact and implications. Expert Rev Vaccines. 2015;14(1):99117. Crossref, MedlineGoogle Scholar
10. Jolley D, Douglas KM. The effects of anti-vaccine conspiracy theories on vaccination intentions. PLoS One. 2014;9(2):e89177. Crossref, MedlineGoogle Scholar
11. Jones AM, Omer SB, Bednarczyk RA, Halsey NA, Moulton LH, Salmon DA. Parents’ source of vaccine information and impact on vaccine attitudes, beliefs, and nonmedical exemptions. Adv Prev Med. 2012;2012:932741. Crossref, MedlineGoogle Scholar
12. Kata A. A postmodern Pandora’s box: anti-vaccination misinformation on the internet. Vaccine. 2010;28(7):17091716. Crossref, MedlineGoogle Scholar
13. Dixon G, Clarke C. The effect of falsely balanced reporting of the autism-vaccine controversy on vaccine safety perceptions and behavioral intentions. Health Educ Res. 2013;28(2):352359. Crossref, MedlineGoogle Scholar
14. Centers for Disease Control and Prevention. Mortality. 2017. Available at: https://www.cdc.gov/nchs/health_policy/mortality.htm. Accessed April 27, 2018. Google Scholar
15. Chu Z, Gianvecchio S, Wang H, Jajodia S. Detecting automation of Twitter accounts: are you a human, bot, or cyborg? IEEE Trans Depend Secure Comput. 2012;9(6):811824. CrossrefGoogle Scholar
16. Collins English Dictionary. Troll definition and meaning. Available at: https://www.collinsdictionary.com/dictionary/english/troll. Accessed April 27, 2018. Google Scholar
17. Ferrara E, Varol O, Davis C, Menczer F, Flammini A. The rise of social bots. Commun ACM. 2016;59(7):96104. CrossrefGoogle Scholar
18. Subrahmanian VS, Azaria A, Durst S, et al. The DARPA Twitter bot challenge. Computer. 2016;49(6):3846. CrossrefGoogle Scholar
19. Ward JK, Peretti-Watel P, Verger P. Vaccine criticism on the Internet: propositions for future research. Hum Vaccin Immunother. 2016;12(7):19241929. MedlineGoogle Scholar
20. Popken B. Twitter deleted Russian troll tweets. So we published more than 200,000 of them. Available at: https://www.nbcnews.com/tech/social-media/now-available-more-200-000-deleted-russian-troll-tweets-n844731. Accessed March 11, 2018. Google Scholar
21. Lee K, Eoff BD, Caverlee J. Seven months with the devils: a long-term study of content polluters on Twitter. Available at: https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2780. Accessed March 11, 2018. Google Scholar
22. Cresci S, Di Pietro R, Petrocchi M, Spognardi A, Tesconi M. Fame for sale: efficient detection of fake Twitter followers. Decis Support Syst. 2015;80:5671. CrossrefGoogle Scholar
23. Cresci S, Pietro RD, Petrocchi M, Spognardi A, Tesconi M. Social fingerprinting: detection of spambot groups through DNA-inspired behavioral modeling. IEEE Trans Dependable and Secure Comput. 2018;15(4):561576. Google Scholar
24. Cresci S, Di Pietro R, Petrocchi M, Spognardi A. The paradigm-shift of social spambots: evidence, theories, and tools for the arms race. In: Barrett R; International World Wide Web Conferences Steering Committee, eds. Proceedings of the 26th International Conference on World Wide Web Companion.Republic and Canton of Geneva: ACM Press; 2017:963972. CrossrefGoogle Scholar
25. Varol O, Ferrara E, Davis CA, Menczer F, Flammini A. Online human–bot interactions: detection, estimation, and characterization. Available at: https://aaai.org/ocs/index.php/ICWSM/ICWSM17/paper/view/15587. Accessed March 11, 2018. Google Scholar
26. Frommer D. Twitter’s list of 2,752 Russian trolls. 2017. Available at: https://www.recode.net/2017/11/2/16598312/russia-twitter-trump-twitter-deactivated-handle-list. Accessed March 11, 2018. Google Scholar
27. Dredze M, Broniatowski DA, Smith MC, Hilyard KM. Understanding vaccine refusal: why we need social media now. Am J Prev Med. 2016;50(4):550552. Crossref, MedlineGoogle Scholar
28. Davis CA, Varol O, Ferrara E, Flammini A, Menczer F. BotOrNot: A System to evaluate social bots. Available at: http://dl.acm.org/citation.cfm?doid=2872518.2889302. Accessed July 25, 2018. Google Scholar
29. Wojcik S, Messing S, Smith A, Rainie L, Hitlin P. Bots in the Twittersphere. 2018. Available at: http://www.pewinternet.org/2018/04/09/bots-in-the-twittersphere. Accessed April 26, 2018. Google Scholar
30. Sandelowski M, Barroso J. Classifying the findings in qualitative studies. Qual Health Res. 2003;13(7):905923. Crossref, MedlineGoogle Scholar
31. Fereday J, Muir-Cochrane E. Demonstrating rigor using thematic analysis: a hybrid approach of inductive and deductive coding and theme development. Int J Qual Methods. 2006;5(1):8092. CrossrefGoogle Scholar
32. Broniatowski DA, Hilyard KM, Dredze M. Effective vaccine communication during the Disneyland measles outbreak. Vaccine. 2016;34(28):32253228. Crossref, MedlineGoogle Scholar
33. Flynn K. Twitter influencers suspect a bot “purge.” Available at: https://mashable.com/2018/01/29/twitter-bots-purge-influencers-accounts. Accessed April 27, 2018. Google Scholar
34. Madrak S. Wingers melt down as twitter finally purges Russian bots. Available at: https://crooksandliars.com/2018/02/wingers-have-sad-twitter-purges-russian-0. Accessed April 27, 2018. Google Scholar
35. Funk C, Kennedy B, Hefferon M. Vast majority of Americans say benefits of childhood vaccines outweigh risks. 2017. Available at: http://www.pewinternet.org/2017/02/02/vast-majority-of-americans-say-benefits-of-childhood-vaccines-outweigh-risks. Accessed February 14, 2017. Google Scholar

Related

No related items

TOOLS

SHARE

ARTICLE CITATION

David A. Broniatowski, PhD, Amelia M. Jamison, MAA, MPH, SiHua Qi, SM, Lulwah AlKulaib, SM, Tao Chen, PhD, Adrian Benton, MS, Sandra C. Quinn, PhD, and Mark Dredze, PhDDavid A. Broniatowski is with the Department of Engineering Management and Systems Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC. Amelia M. Jamison and Sandra C. Quinn are with the Department of Family Science, School of Public Health, University of Maryland, College Park. Sihua Qi and Lulwah Alkulaib are with the Department of Computer Science, School of Engineering and Applied Science, The George Washington University. Tao Chen, Adrian Benton, and Mark Dredze are with the Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD. “Weaponized Health Communication: Twitter Bots and Russian Trolls Amplify the Vaccine Debate”, American Journal of Public Health 108, no. 10 (October 1, 2018): pp. 1378-1384.

https://doi.org/10.2105/AJPH.2018.304567

PMID: 30138075